RE: Answers Only
05-25-2016, 10:59 PM
Code:
\begin{align*}
\pder{}{x}\left(-\frac{1}{\rho}\pder{p}{y}\right)&=-\left(\left(\pder{}{x}\frac{1}{\rho}\right)\pder{p}{y}+\frac{1}{\rho}\left(\pder{}{x}\pder{p}{y}\right)\right)\\
&=-\left(-\frac{1}{\rho^2}\pder{\rho}{x}\pder{p}{y}+\frac{1}{\rho}\pder{^2p}{x\partial y}\right)\\
\pder{}{y}\left(-\frac{1}{\rho}\pder{p}{x}\right)&=-\left(\left(\pder{}{y}\frac{1}{\rho}\right)\pder{p}{x}+\frac{1}{\rho}\left(\pder{}{y}\pder{p}{x}\right)\right)\\
&=-\left(-\frac{1}{\rho^2}\pder{\rho}{y}\pder{p}{x}+\frac{1}{\rho}\pder{^2p}{y\partial x}\right)\\
\pder{}{x}\left(-\frac{1}{\rho}\pder{p}{y}\right)-\pder{}{y}\left(-\frac{1}{\rho}\pder{p}{x}\right)&=-\left(-\frac{1}{\rho^2}\pder{\rho}{x}\pder{p}{y}+\frac{1}{\rho}\pder{^2p}{x\partial y}\right)+\left(-\frac{1}{\rho^2}\pder{\rho}{y}\pder{p}{x}+\frac{1}{\rho}\pder{^2p}{y\partial x}\right)\\
&=\frac{1}{\rho^2}\left(\pder{\rho}{x}\pder{p}{y}-\pder{\rho}{y}\pder{p}{x}\right)
\end{align*}